Surname	Centre Number	Candidate Number
Other Names		0

GCSE - NEW

3445UB0-1

APPLIED SCIENCE (Double Award) UNIT 2: Space, Health and Life

HIGHER TIER

MONDAY, 11 JUNE 2018 - MORNING

1 hour 30 minutes

_			
	For Examiner's use only		
	Question	Maximum Mark	Mark Awarded
Section A	1.(a)(b)(c)	19	
	1.(d)	6	
Section B	2.	16	
	3.	12	
	4.	12	
	5.	10	
	Total	75	

ADDITIONAL MATERIALS

In addition to this examination paper, you will require a separate Resource Folder, calculator, pencil and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

Question 3(a) is a quality of extended response (QER) question where your writing skills will be assessed.

You are reminded to show all your workings. Credit is given for correct workings even when the final answer given is incorrect.

A periodic table is printed on page 16.

Section A

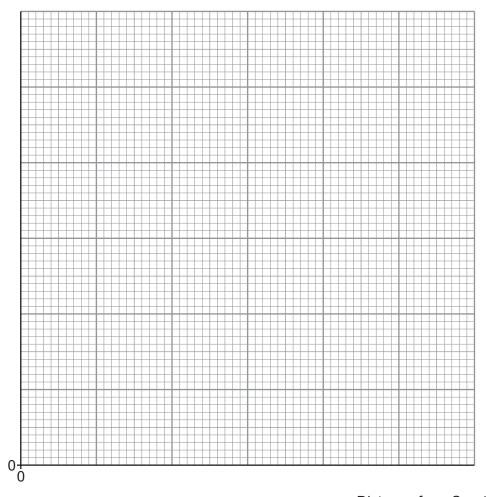
Answer all questions in the spaces provided.

Use the information in the separate Resource Folder to answer the following questions.

- 1. (a) Use the information in **Table 1** to answer the following questions.
 - (i) Europa is an asteroid. Estimate its temperature and orbital period.

[2]

Temperature =°C


Orbital period =days

(ii) Pluto is no longer classed as a planet. State **one** reason why.

[1]

(iii) Plot the points on the grid below to show how the orbital velocity of the five planets Mercury, Venus, Earth, Mars and Jupiter depends on distance from the Sun. Draw a suitable line.

Orbital Velocity (km/s)

Distance from Sun (AU)

344 511B01	

	(iv)	Orbital velocity is not proportional to the distance from the Sun. Explain how your graph shows this to be true.	[2]
(b)		your knowledge and the information on pages 4 and 5 to answer the followistions. Explain why sunspots appear darker than the surrounding area of the Sun.	ng [2]
	(ii)	State two ways in which human activities may be affected by solar flares.	[2]
		1. 2.	
	(iii) 	Explain why the effect of solar flares on the Earth is not the same for each sunspecycle.	[2]
(c)	Use	the information in Diagram 1 to describe the differences between Aristotle's model e Solar System and the 2006 model.	

(d)	Use	the information in Diagram 3 to answer the following questions.	
	(i)	Explain what you can deduce about the motion of the three galaxies.	[3]

	(ii)	Explain what you can deduce about the chemical composition of the three galax	ies. [3]
	(ii)	Explain what you can deduce about the chemical composition of the three galax	
	(ii)	Explain what you can deduce about the chemical composition of the three galax	
	(ii)	Explain what you can deduce about the chemical composition of the three galax	
	(ii)	Explain what you can deduce about the chemical composition of the three galax	

6

BLANK PAGE

© WJEC CBAC Ltd. (3445UB0-1) Turn over.

Section B

- **2.** Velothon Wales is a weekend of road cycling events. The Bloodwise cycling team raises funds to help beat blood cancer.
 - (a) Three cyclists are monitored before the Velothon. They have blood samples taken.

The results of their blood tests are shown in the table below. Normal ranges are also given.

Name of cyclist	Red blood cell count (10 ⁶ /cm ³)	White blood cell count (10 ³ /cm ³)	Platelet count (10 ³ /cm ³)
Normal range	4.4 - 5.8	3.9 - 10.8	130 - 400
Brian	5.5	35.1	240
Gareth	2.2	6.6	115
Jonathan	4.7	8.8	320

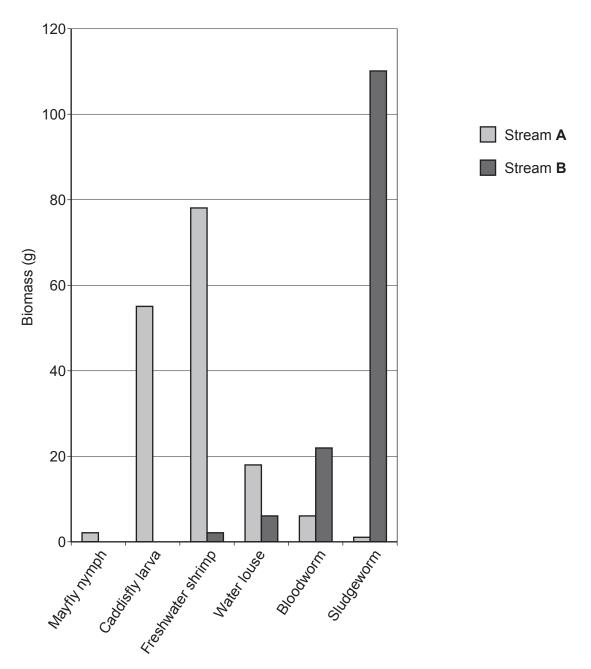
(i)	Suggest which cyclist needs treatment for an infection.	[2]
	Cyclist	
	Reason	
•••••		
(ii)	Suggest which cyclist needs treatment to raise their haemoglobin level.	[2]
	Cyclist	
	Reason	
•••••		
(iii)	Suggest which cyclist will experience a problem if he has a fall and cuts himsel	f. [2]
	Cyclist	
	Reason	

(b)	Expl	ain how the structure of veins and capillaries are related to their function. [4]	Examiner only
(c)	(i)	During a training ride, Jonathan accelerated from rest over a distance of 10 m in 2.5 s then travelled another 96 m at a constant speed in 6 s. Use the equations: $speed = \frac{distance}{time}$	
		and	
		acceleration = $\frac{\text{change in velocity}}{\text{time}}$	3445UB01
		to calculate the acceleration of the cyclist. [4]	
		Acceleration = m/s ²	
	(ii)	Jonathan has a height of 1.9 m. He is advised his maximum BMI should be 22. Use the equation:	
		$BMI = \frac{mass}{height^2}$	
		to calculate his maximum mass. [2]	

Mass= Kg

Turn over.

16


3. Water pollution can be monitored using invertebrates as indicators. Some indicator species are shown below.

Water quality	Indicator species	
Clean water	Stonefly nymph	Mayfly nymph
Some pollution	Freshwater shrimp	Caddisfly larva
Moderate pollution	Water louse	Bloodworm
High pollution	Sludgeworm	Rat-tailed maggot
Very high pollution	N	o life

(Not drawn to scale.)

(a)	Describe how you would carry out an investigation to determine water quality in a stream using invertebrates as indicator species. [6 QER]	
•••••		
•••••		
•••••		
• • • • • • • • • • • • • • • • • • • •		
•••••		

(b) The results from such an investigation are shown in the chart below.

Species present

(i)	Explain what conclusions can be made about the water quality in stream A and stream B . [4]	only
(ii)	Explain why it is difficult to obtain repeatable data in this experiment. [2]	

Examiner

12

4. (a) Green plants capture a small percentage of solar energy during the process of photosynthesis. The table below shows how the absorption of light by a green plant depends on the wavelength of the visible light.

Wavelength of visible light (nm)	Absorption (%)
400	85
450	100
500	2
550	12
600	18
650	35
700	75

(i)	Describe how the absorption of light depends on the wavelength of visible light.	[3]
•••••		
(ii)	Electromagnetic waves travel at $3 \times 10^8 \text{m/s}$ in space.	
	Use the equation: wave speed = frequency × wavelength	
	to calculate the frequency of light which is most strongly absorbed. $(1 \text{nm} = 1 \times 10^{-9} \text{m})$	[3]

Frequency = Hz

[2]

The table shows what happens to the energy taken in each day by organisms in the food (b) chain below.

Owneries	Energy per day (MJ)				
Organisms	As waste	Released during respiration	Used for growth		
grass	grass 6		8		
grasshopper	14	22	3		
shrew		26	4		
fox	24	32	4		

(i)	The shrew releases 60% of its energy during respiration and for growth.
	Calculate how much energy is released by the shrew as waste.

Energy as waste =	M.	J	l
			l

	<u> </u>	•	
(ii)	Explain why the amount of energy released during increases through the food chain.		m 2]
(iii)	Sometimes plant seeds will stick to the coat of a t plant.		ne 2]

12

5. Nuclear medicine involves the use of radioactive substances in the diagnosis and treatment of disease. Nuclear medicine records radiation emitted from within the body rather than radiation that is generated by external sources like X-rays. Nuclear medicine scans differ from radiology as the emphasis is not on imaging but on organ function.

Information about some isotopes that emit gamma (γ) rays is given in the table.

Radioisotope	Half-life	Energy of γ rays	
caesium-137	30.17 years	0.662 MeV	
cobalt-60	5.26 years	1.17 MeV	
iodine-125	59.6 days	31.4 keV	
thallium-201	73.0 hours	71.0 keV	
palladium-103	17.0 days	21.0 keV	

	Describe the nature of a gamma (γ) ray.	[2]
(ii)	Explain why radioisotopes that emit gamma rays are suitable for examining or function when injected into the body.	gan [2]
(iii)	Explain which is the most suitable radioisotope from the table to inject into	the
	human body as part of a gamma camera investigation.	[2]

(a)

END OF PAPER

(b)

)	In order to treat prostate cancer, palladium-103 pellets are placed directly into the prostat gland. They remain permanently in place. The gamma emissions from the pellets ar almost undetectable when their activity drops to 1/32 of its original value. Calculate the time taken for this reduction to occur.					
	Time = days	8				
		10				

Examiner only

© WJEC CBAC Ltd. (3445UB0-1) Turn over.

				1			1	1	
	0	Helium		40 Ar Argon 18		131 Xe Xenon 54			
	_		19 F Fluorine 9	35.5 CI Chlorine		127 lodine 53	210 At Astatine 85		
	9		16 O Oxygen 8	32 S Sulfur 16	79 Se Selenium 34	128 Te Tellurium 52	210 Po Polonium 84		
	2		14 N Nitrogen	31 Phosphorus 15	75 As Arsenic	122 Sb Antimony 51	209 Bi Bismuth		
	4		12 C Carbon 6	28 Si Silicon	73 Ge Germanium 32	119 Sn Tin 50	207 Pb Lead 82		
	ო		11 B Boron 5	27 AI Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 TI Thallium 81		
щ					65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80		
THE PERIODIC TABLE					63.5 Cu Copper 29	Ag Ag Silver	Au Gold 79		
					59 Ni Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78		mass
RIO					59 Co Cobalt 27	103 Rh Rhodium 45	192 Iridium 77		relative atomic mass
E PE	Group	eu]		56 Fe Iron 26	101 Ruthenium 44	190 Os Osmium 76	Key	rela
Ŧ	Gre	Hydrogen			55 Mn Manganese 25	99 Tc Technetium 43	186 Re Rhenium 75		A
					52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		
						93 Nb Niobium 41			
					48 Ti Titanium 22	91 Zr Zirconium 40	179 Hf Hafnium 72		
					45 Sc Scandium 21	89 Y Yttrium 39	139 La Lanthanum 57	227 Actinium 89	
	7		9 Be Beryllium	24 Mg Magnesium 12	40 Ca Calcium 20	88 Sr Strontium 38	137 Ba Barium 56	226 Ra Radium	
	~		7 Li Lithium 3	23 Na Sodium	39 K Potassium	86 Rb Rubidium 37	133 Cs Caesium 55	223 Fr Francium 87	